s 4 -

Strings
The Structure of Strings:

String is a data structure.
A stringis a sequence of zero or more characters.
eg. "Hi therel!"

A string’s length is the number of characters it contains. Python’slen function returns
this value when it is passed a string.

>>> len("Hi there!")
S

>>> |len("")

0

The positions of a string’s characters are numbered

from O, on the left, to the length of the siring minus 1,
on the right.

The string is an immutable data structure. This means that its internal data elements,
the characters, can be accessed, but cannot be replaced, inserted, or removed.

The Subscript Operator:
a simple for loop can access any of the characters in a string, sometimes you just want
to inspect one character at a given position without visiting them all. The subscript
operator [] makes this possible.

<a string>[<an integer expression>]

The integer expressionis also called an index.

>>> name = "Alan Turing"

>>>name[0]
IAI
>>>name|[3]

n
>>> name[len(name)]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: string index out of range
>>> name[len(name) - 1]

g
>>>name|-]

g
>>>name|[-2]

n

The next code segment uses a count-controlled loop to display the characters and their
positions:

>>> data = "apple”
>>> for index in range(len(data)):
print(index, data[index])

Slicing for Substrings
You can use Python’s subscript operator to obtain a substring through a process called
slicing. To extract a substring, the programmer places a colon (:) in the subscript.

>>> name = "myfile.txt"
>>>namef0 :]

'myfile.txt’

>>>name(0 : 1] # The first character

Im I

>>>namel 0: 2] # The first two characters
Imyl

>>> name[: len(name)] # The entire string
'myfile.txt’

>>>name/[-3 : | # The last three characters
X
>>>name[2 : 6] # Drill to extract file'

file'

Testing for a Substring with the inOperator

Python’s in operator : We can search for a substring or a character using this operator.

v'"When used with strings, the left operand of in is a target substring, and the right
operand is the string to be searched.

v'The operatorin returns True if the target string is somewhere in the search string, or
False otherwise.

eg.,
>>> fileList = ["myfile.txt", "myprogram.exe”, "yourfile.txt"]
>>> for fileName in fileList:
if ".txt"in fileName:
print(fileName)
o/p - myfile.txt
yourfile.txt

Exer
o [=5

1.Assume that the variable data refers to the string "myprogram.exe". Write the values of
the following expressions:

a. data[2]

b. data[-1]

c. len(data)

d. data[0:8]

2.Assume that the variable data refers to the string "myprogram.exe". Write the
expressionsthat perform the following tasks:

a. Extract the substring "gram" from data.

b. Truncate the extension ".exe" from data.

c. Extract the character at the middle position from data.

3.Assume that the variable myString refers to a string. Write a code segment that
uses a loop to print the characters of the string in reverse order.

4.Assume that the variable myString refers to a string, and the variable
reversedString refers to an empty string. Write a loop that adds the characters
from myString to reversedStringin reverse order.

String Methods

* Python includes a set of string operations called methods.
* A method behaves like a function but has a slightly different syntax.

* Unlike a function, a method is always called with a given data value called an object,
which is placed before the method name in the call.

<an object>.<method name>(<argument-1>,...,<argument-n>)
Methods can also expect arguments and return values.

A method knows about the internal state of the object with which it is called.

String Method

What it Does

s.center(width)

.count(sub [, start [, end]])

.endswith(sub)

.find(sub [, start [, end]])

.isalpha(Q)
.isdigit(Q)

.join(sequence)

Returns a copy of s centered within the given number of
columns.

Returns the number of non-overlapping occurrences of
substring sub in s. Optional arguments start and end
are interpreted as in slice notation.

Returns True if s ends with sub or False otherwise.

Returns the lowest index in s where substring sub
Is found. Optional arguments start and end are
Interpreted as in slice notation.

Returns True if s contains only letters or False otherwise.

Returns True if s contains only digits or False otherwise.

Returns a string that is the concatenation of the strings in
the sequence. The separator between elements is s.

.lower()

.replace(old, new [, count])

.split([sepl)

. startswith(sub)

.strip([aString])

.upper()

Returns a copy of s converted to lowercase.

Returns a copy of s with all occurrences of substring old
replaced by new. If the optional argument count is given,
only the first count occurrences are replaced.

Returns a list of the words in s, using sep as the delimiter
string. If sep is not specified, any whitespace string is a
separator.

Returns True if s starts with sub or False otherwise.

Returns a copy of s with leading and trailing whitespace
(tabs, spaces, newlines) removed. If aString is given,
remove characters in aString instead.

Returns a copy of s converted to uppercase.

some string methods in action:

>>s = "Hi there!" >>> s.isalpha()

>>> len(s) False

X b Iph
>>> 'agbc'.isalpha

>>>s.center(11) - pha()

rue

"Hi there! '

>>> s.count('e’) 2 >>>"326".isdigit()
True

>>> s.endswith("there!")

True >>> words = s.split()
>>> s.startswith("Hi") >>> words

True ['Hi', 'there!’]

>>> s.find("the") —

. >>>"" join(words)

'Hithere!’

>>>"" join(words)
'Hi there!'

>>> s.lower()
'hi there!’

>>> s.upper()
'HI THERE!'

>>> s.replace('i’, 'o')
'Ho there!’

e Extracting a filename’s extension using split() method
e >>> "myfile.txt". split('.")
['myfile’, "txt']
e >>> "myfile.py". split('.')
['myfile’, 'py']
e >>> "myfile.html". split(".")
['myfile’, 'html']

Towrite a general expression for obtaining any filename’s extension, as follows:
filename.split('.")[-1]

>>> filename="myfile.txt"
>>> filename.split(".')[-1]
‘txt’

* Exercises
1. Assume that the variable data refers to the string "Python rules!”. Use a string
method from perform the following tasks:
a. Obtain a list of the words in the string.
b. Convert the string to uppercase.
c. Locate the position of the string "rules".

d. Replace the exclamation point with a question mark.

e 2. Using the value of data from Exercise 1, write the values of the following
expressions:

a. data.endswith('i')

b. " totally ". join(data.split())

Number System

The value of each digit in a number can be determined using -

v’ Thedigit

v' The position of the digit in the number

v'The base of the number system (where the base is defined as the total number of
digits available in the number system)

1) decimal number system - base 10 number system
0,1,2,3,45,6, 7, 8,and 9 as digits

2) binary number system- base 2 number system
binary O and 1

3) octal number system - base 8 number system
0,12 3,4,5,6,and 7

4) hexadecimal number system- base 16 number system
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, F

Toidentify the system being used, you attach the base as a subscriptto the number.

415 in binary notation 110011111,
415 in octal notation 6373
415 in decimal notation 4154

415 in hexadecimal notation 19F;¢

v'The digits used in each systemare countedfrom O ton — 1, where n is the system’s base.
v'Thus, the digits 8 and 9 do not appear in the octal system.

v Torepresent digits with values larger than 9,, systemssuch as base 16 use letters. Thus,
A, grepresents the quantity 10,9, whereas 10,5 represents the quantity 164,

The Positional System for Representing Numbers

positional notation—thatis, the value of each digit in a number is determined by the
digit’s position in the number. In other words, each digit has a positional value.

How to find positional value of a digit in a number?

The positional value of a digit is determined by raising the base of the systemto the
power specified by the position . (baseresition)

For an n-digit number, the positions are numbered from n — 1 down to 0, starting with
the leftmost digit and moving to the right.

eg., the positional values of the three-digit number 4154, are:
100(10)2,10(10)*,and 1 (10)9, moving from left to right in the number.

To determine the quantity represented by a numberin any system from base 2 through base 10,

you multiply each digit (as a decimal number) by its positional value and add the results e

The following example shows how this is done for a three-digit number in base 10:

415, =

4 %107 +1*10' +5=*10° =
4% 1001 %10 -+ 5+1
400 + 10 +5

Converting Binary to Decimal

conversion process : Multiply the value of each bit (0 or 1) by its positional value and
add the results.

1100111, =

1526 +1%25+0%244+0%23 4+1%224+1%214+1%20=
1*64+1%32+0*%16+0*8+1*4+1*2+1*1=
64 + 32 +4 +2 1

Converts a string of bits to a decimal integer.

bitString = input("Enter a string of bits: ")

decimal =0

exponent = len(bitString) - 1

for digit in bitString:
decimal = decimal + int(digit) * 2 ** exponent
exponent = exponent - 1

print("The integer value is", decimal)

Enter a string of bits: 1111
The integer value is 15

1)
2)

Converting Decimal to Binary

This algorithm repeatedly divides the decimal number by 2.

After each division, the remainder (eithera O or a 1) is placed at the beginning of a
string of bits.

The quotient becomes the next dividend in the process.

The string of bits is initially empty,and the process continues while the decimal

number is greater than 0.
Decimal number : 17

Binary number: 10001

decimal = int(input("Enter a decimal number: "))
if decimal == 0O:
print(0)
else:
bitString = ""
while decimal > O:
remainder = decimal % 2
decimal = decimal // 2
bitString = str(remainder) + bitString

print("The binary representation is", bitString)

Enter a decimal number: 156

The binary representation is 00111001

Conversion Shortcuts

Decimal

0
1
2
3
4
b
6
/
8

v'Note the rows that contain exact powers of 2 (2, 4, and 8 in decimal).
v'Each of the corresponding binary numbers in that row containsa 1 followed by a
number of zeroes that equal the exponentused to compute that power of 2.

v'Thus, a quick way to compute the decimal value of the number 10000, is 240or 164,.

v’ The rows whose binary numbers contain all 1s correspond to decimal numbers that are
one less than the next exact power of 2.

v'For example, the number 111, equals 23-1, or 7.
Thus, a quick way to compute the decimal value of the number 11111, is 25-1 or 314,.

Octal Number System

It requires only 3 bits to representvalue of any digit.

Octal numbers are indicated by the addition of either an 0o prefix or an 8 subscript.
Position of every digit has a weight which is a power of 8.

Numeric value of an octal number is determined by multiplying each digit of the
number by its positional value and then adding the products.

The main advantage of using Octal numbers is that it uses less digits than decimal and
Hexadecimal number system. So, it has fewer computationsand less computational
errors.

Conversions

Octal Digit Value Binary Equivalent
0 000
001
010

011
100
101
110
111

Binary to Octal Conversion

Group the bits into three’s starting

001101010111001111

from the right hand side

Octal to Binary Conversion

» Original octal number

1 7 2 » Grouped octal values

001 111 010 » Binary value of each

grouped octal value

Octal to Decimal Conversion

-(1024)+(192)+(16)+(2)
Decimal number form equals: 123410

Decimal to Octal Conversion

Binary to Octal Conversion

bitString = input("Enter a string of bits: ")
decimal =0
exponent = len(bitString) - 1
for digit in bitString:
decimal = decimal + int(digit) * 2 ** exponent
exponent = exponent - 1

i=1

octal=0

while decimal = O:
octal += int(decimal % 8)*i
decimal /= 8
i *=10

print("octal number is: ",octal)

Octal to Binary Conversion

oc = int(input("Enter the octal number: "))
dec =0
i=0
while oc I= 0:
dec = dec + (oc % 10) * pow(8, i)
oc=oc//10
| =i+1

bil=git
while dec != 0:

rem =dec % 2

dec = dec // 2

bi = str(rem) + bi
print("binary number is:", bi)

Hexadecimal Number System

It requires only 4 bits to representvalue of any digit.

Hexadecimal numbers are indicated by the addition of either an Ox prefixor an 16
as subscript.

Position of every digit has a weight which is a power of 16.

Numeric value of a hexadecimal number is determined by multiplying each digit
of the number by its positional value and then adding the products.

So, it is also a positional (or weighted) number system.

Binary to Hexadecimal Conversion

Factor the bits into groups of four and look up the corresponding hex digits.

01101110 p» Ongmnal binary number

0110 1110 3 Grouped binary number

6 E » Hex value of grouped bmary
number

(01101110); =(6E)1s —» Converted value

Hexadecimal to Binary Conversion

e Each digit in the hexadecimal number is equivalent to four digits in the binary
number.

- Thus, to convert from hexadecimal to binary, you replace each hexadecimal digit
with the corresponding 4-bit binary number.

——pHexadecimal number

1 A 8

Y v o

0001 1010 1100 — "™hexadecimal grouped digit

Binary equivalent of each

(1AC)15=
(000110101100)2

List Literals and Basic Operators

* literal string values are written as sequences of characters enclosed in quote marks.

* In Python, a list literal is written as a sequence of data values separated by commas.
The entire sequence is enclosed in square brackets ([and]).

Eg.,

[1951, 1969, 1984] # A list of integers
["apples", "oranges", "cherries"] # A list of strings
[] # An empty list

You can also use other lists as elements in a list, thereby creating a list of lists.
[[5, 9], [541, 78]]

Construction of two lists and their assignment to variables:
>>> first=[1, 2, 3, 4]

>>> second = list(range(1, 5))

>>> first

(1,2, 3,4]

>>> second

{1, 2, 3

The list function can build a list from any iterable sequence of elements, such as a string:
>>> third = list("Hi there!")
>>> third

L I A - Y B Y O B i P B iy B IS B sy B Y N |
[HI Il Itl hl el rl el 'I]

The function len and the subscript operator [] work just as they do for strings:
>>> len(first)

4

>>> first[0]

1

>>> first[2:4]

[3, 4]

Concatenation (+) and equality (==) also work as expected for lists:
>>> first + [5, 6]

[1,2, 3,45, 6]

>>> first == second

True

* Toprint the contents of a list without the bracketsand commas, you can use a for loop,
as follows:

>>> for number in [1, 2, 3, 4]:
print(number, end = " ")
1234

* Finally, you can use the in operator to detect the presence or absence of a given
element:

>>>3in [1, 2, 3]
True
>>>0in [1, 2, 3]

False

Operator or Function

What It Does

L[<an 1integer expression>]

Ll<start>:<end>]

L1 + L2

print(L)
Ten(L)

Tist(range(<upper>))

for <variable> in L: <statement>

<any value> 1in L

Subscript used to access an element at the given
index position.

Slices for a sublist. Returns a new list.

List concatenation. Returns a new list consisting of
the elements of the two operands.

Prints the literal representation of the list.

Returns the number of elements in the list.

Returns a list containing the integers in the range O
through upper - 1.

Compares the elements at the corresponding posi-
tions in the operand lists. Returns True if all the
results are true, or False otherwise.

lterates through the list, binding the variable to each
element.

Returns True if the value is in the list or Fal se
otherwise.

Replacing an Element in aList

There is one huge difference between String and List.

ie., a stringis immutable, its structure and contents cannot be changed. But a list is
changeable—that s, it is mutable.

At any pointin a list’s lifetime, elements can be inserted, removed, or replaced. The list
itself maintains its identity but its internal state—itslength and its contents—can change.

>>>example = [1, 2, 3, 4]
>>> example

[1,2,3,4]

>>> example[3] = 0

>>> example

[1, 2, 3, 0]

* How to replace each numberin a list with its square:
>>> numbers = [2, 3, 4, 5]

>>> numbers

[2, 3,4, 5]

>>> for index in range(len(numbers)):

numbers[index] = numbers[index] ** 2

>>>numbers

[4, 9, 16, 25]

* This session uses the string method split to extract a list of the wordsin a sentence.
These words are then converted to uppercase letters within the list:

>>> sentence = "This example has five words."

>>> words = sentence.split()

>>> words

['This’, 'example’, 'has’, five', 'words.']

>>> for index in range(len(words)):
words[index] = words[index].upper()

>>> words

['THIS', 'EXAMPLE’, 'HAS', 'FIVE', 'WORDS.']

List Methods for Inserting and RemovingElements

List Method

What It Does

L.append(element)
L.extend(alist)

L.1insert(index, element)

L.pop()
L.pop (index)

Adds element to the end of L.

Adds the elements of aList to the end of L.

Inserts element at index if index Is less than the length
of L. Otherwise, inserts element at the end of L.

Removes and returns the element at the end of L.

Removes and returns the element at index.

>>> example = [1, 2]

>>> example

[1, 2]

>>> example.insert(1, 10)
>>> example

[1, 10, 2]

>>> example.insert(3, 25)
>>> example

[1, 10, 2, 25]

>>> example = [1, 2]
>>> example
[1, 2]

>>> example.append(3)
>>> example
[1, 2, 3]

>>> example.extend([11, 12, 13])
>>> example
[1,2, 3, 11,12, 13]

>>>example + [14, 15]
[1,2 3, 11, 12, 13, 14, 15]

>>> example
[1,2, 3, 11,12, 13]

Searching a List

* After elements have been added to a list, a program can search for a given element.

- The in operatordetermines an element’s presence or absence, but programmers
often are more interestedin the position of an element if it is found.

- Instead of find, you must use the method index to locate an element’s position in a
!CISt. I’éis unfortunate that index raises an exception when the target elementis not
ound.

* Toguard against this unpleasant consequence, you must first use the in operator to
test for presence and then the index method if this testreturns True.

alist = [34, 45, 67]
target = 45

if target in alList:
print(alist.index(target))
else:

print(-1)

Sorting a List

* yOou can arrange some elements in numeric or alphabetical order.

* A list of numbersin ascending order and a list of names in alphabetical order are
sorted lists.

When the elements can be related b(}/ comparing them for less than and greater than
as well as equality, they can be sorted.

* The list method sort mutates a list by arranging its elements in ascending order.

>>> example = [4, 2, 10, 8]
>>> example

[4, 2, 10, 8]

>>> example.sort()

>>> example

12, 4,8 10]

Mutator Methods and the Value None

Mutable objects (such as lists) have some methods devoted entirely to modifying the
internal state of the object. Such methods are called mutators. Examples are the list
methods insert, append, extend, pop, and sort.

Python nevertheless automatically returns the special value None even when a method
does not explicitly return a value.

Eg.,
>>> glist = alist.sort()
Unfortunately, after the list object is sorted, this assignment has the result of setting the

variable alist to the value None.
>>> print(alist)
None

Aliasing and Side Effects

The mutable property of lists leads to some interesting phenomena, as

shown in the following example:

>>> first = [10, 20, 30] >>> first
>>> second = first [10, 99, 30]
>>> first >>> second

10, 99, 30
[10, 20, 30] [I

>>> second
[10, 20, 30]
>>> first[1] = 99

In this example, a single list object is created and modified using the subscript operator.
When the second element of the list named first is replaced, the second element of the

list named second is replaced also. This type of change is what is known as a side effect.

This happens because after the assignment second = first, the variables first and

second refer to the exact same list object. They are aliases for the same object. This
phenomenon is known as aliasing.

Topreventaliasing, you can create a new object and copy the contents of the original to it
>>> third =[]

>>> for element in first:
third.append(element)
>>> first

[10, 99, 30]

>>> third

[105.99) 30

>>> first[1] = 100

>>> first

[10, 100, 30]

>>> third

[10, 99, 30]

The variables first and third refer to two different

initially the same, The important point is that they are not aliases, so you don’t have to be

distrobjeotsjalthough their contents are

Equality: Object Identity and Structural Equivalence

* If you might want to determine whether one variable is an alias for
another. The == operator returns True if the variables are aliases for the
same object.

* Unfortunately, == also returns True if the contents of two different
objects are the same.

* The first relation is called object identity, whereas the second relation is
called structural equivalence.

* The == operator has no way of distinguishing between these two types of
relations.

The solution to this problem :

Python’s is operator can be used to test for object identity. It returns True if the two
operands refer to the exact same object, and it returns False if the operands refer to
distinct objects (even if they are structurally equivalent).

>>> first = [20, 30, 40]
>>> second = first .
>>> third = list(first) # Or first/[:] first .
>>> first == second second

True 0 1 2

>>> first == third

>>> first is second

True
>>> first is third
False

Using a List to Find the Median of a Set of Numbers

 |f the number of values in a list is odd, the median of the list is the value at the
midpoint when the set of numbers is sorted; otherwise, the median is the
average of the two values surrounding the midpoint.

* Thus, the median of the list [1, 3, 3, 5, 7] is 3, and the median of the list [1, 2,
4, 4] is also 3.

fileName = input("Enter the filename: ") f = open(fileName, 'r’
numbers =[]
for line in f:
words SiieSEE e | IS SCTipt inputs a set of numbers
forword in words: from a text file and print their median
numbers.append(float(word))
numbers.sort()
midpoint = len(numbers) // 2
print("The median is", end =" ")
if len(numbers) % 2 == 1:
print(numbers[midpoint])
else:
print((numbers[midpoint] + numbers[midpoint - 1]) / 2)

List Comprehension

List comprehensionis an elegant way to define and create lists based on existing lists.

List Comprehension vs For Loop in Python

Suppose, we want to separate the letters of the word “person” and add the letters as
items of a list. The first thing that comes in mind would be using for loop.

>>> letters=[]

>>> for letter in "person”:
letters.append(letter)

>>> print(letters)

I 1

['p', ‘e, 'r, s, ‘o), 'n']

* |terating through a string Using List Comprehension

letters = [letter for letter in ‘person’ |

print(letters)

r 1

['p), ‘e, 'r, s, G

» Syntax for List Comprehension

[expression for item in list]

Some Examples for List Comprehension:

>>> #compute the square of numbers upto 10
>>>sq = [i*i foriin range(11)]

>>> print(sq)

[0,1,4,9, 16, 25, 36, 49, 64, 81, 100]

>>> ffcreate a vowels list from a string
>>>v =[iforiin "everyone" if i in "aeiou"]
>>> print(v)

['e), ‘e, o, e]

Coding
1ENQEGL$<%§?»1 to print the transpose of a matrix.

2. Write a program to add two matrices.

