

MODULE 2

Strings

The Structure of Strings:

String is a data structure.
A string is a sequence of zero or more characters.
eg. "Hi there!"

A string’s length is the number of characters it contains. Python’s len function returns
this value when it is passed a string.

>>> len("Hi there!")
9
>>> len("")
0

The positions of a string’s characters are numbered
from 0, on the left, to the length of the string minus 1,

on the right.

The string is an immutable data structure. This means that its internal data elements,
the characters, can be accessed, but cannot be replaced, inserted, or removed.

The Subscript Operator:
a simple for loop can access any of the characters in a string, sometimes you just want
to inspect one character at a given position without visiting them all. The subscript
operator [] makes this possible.

<a string>[<an integer expression>]

The integer expression is also called an index.

>>> name = "Alan Turing"
>>> name[0]
'A'
>>> name[3]
'n'
>>> name[len(name)]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: string index out of range

>>> name[len(name) - 1]
'g'
>>> name[-l]
'g'
>>> name[-2]
'n'

The next code segment uses a count-controlled loop to display the characters and their
positions:

>>> data = "apple"
>>> for index in range(len(data)):
print(index, data[index])

1 a
2 p
3 p
4 l
5 e

Slicing for Substrings
You can use Python’s subscript operator to obtain a substring through a process called
slicing. To extract a substring, the programmer places a colon (:) in the subscript.

The entire string

The first character

The first two characters

The entire string

The last three characters

Drill to extract 'file'

>>> name = "myfile.txt"
>>> name[0 :]
'myfile.txt'
>>> name[0 : 1]
'm'
>>> name[0 : 2]
'my'
>>> name[: len(name)]
'myfile.txt'
>>> name[-3 :]
'txt'
>>> name[2 : 6]
'file'

Testing for a Substring with the inOperator

Python’s in operator : We can search for a substring or a character using this operator.

✓When used with strings, the left operand of in is a target substring, and the right
operand is the string to be searched.

✓The operator in returns True if the target string is somewhere in the search string, or
False otherwise.

eg.,
>>> fileList = ["myfile.txt", "myprogram.exe", "yourfile.txt"]
>>> for fileName in fileList:

if ".txt" in fileName:
print(fileName)

o/p - myfile.txt
yourfile.txt

Exer
cises

1.Assume that the variable data refers to the string "myprogram.exe". Write the values of
the following expressions:

a. data[2]
b. data[-1]
c. len(data)
d. data[0:8]

2.Assume that the variable data refers to the string "myprogram.exe". Write the
expressions that perform the following tasks:

a. Extract the substring "gram" from data.
b. Truncate the extension ".exe" from data.
c. Extract the character at the middle position from data.

3.Assume that the variable myString refers to a string. Write a code segment that
uses a loop to print the characters of the string in reverse order.

4.Assume that the variable myString refers to a string, and the variable
reversedString refers to an empty string. Write a loop that adds the characters
from myString to reversedString in reverse order.

String Methods

• Python includes a set of string operations called methods.

• A method behaves like a function but has a slightly different syntax.

• Unlike a function, a method is always called with a given data value called an object,
which is placed before the method name in the call.

<an object>.<method name>(<argument-1>,..., <argument-n>)

Methods can also expect arguments and return values.

A method knows about the internal state of the object with which it is called.

some string methods in action:

>> s = "Hi there!"

>>> len(s)

9

>>> s.center(11)

' Hi there! '

>>> s.count('e') 2

>>> s.endswith("there!")

True

>>> s.startswith("Hi")

True

>>> s.find("the")

3

>>> s.isalpha()
False

>>> 'abc'.isalpha()
True

>>> "326".isdigit()
True

>>> words = s.split()
>>> words
['Hi', 'there!']

>>> " ".join(words)
'Hithere!'

>>> " ". join(words)
'Hi there!'

>>> s.lower()
'hi there!'

>>> s.upper()
'HI THERE!'

>>> s.replace('i', 'o')
'Ho there!'

• Extracting a filename’s extension using split() method

• >>> "myfile.txt". split('.')

['myfile', 'txt']

• >>> "myfile.py". split('.')

['myfile', 'py']

• >>> "myfile.html". split('.')

['myfile', 'html']

To write a general expression for obtaining any filename’s extension, as follows:

filename.split('.')[-1]

>>> filename="myfile.txt"

>>> filename.split('.')[-1]

'txt'

• Exercises

1. Assume that the variable data refers to the string "Python rules!". Use a string

method from perform the following tasks:

a. Obtain a list of the words in the string.

b. Convert the string to uppercase.

c. Locate the position of the string "rules".

d. Replace the exclamation point with a question mark.

• 2. Using the value of data from Exercise 1, write the values of the following
expressions:

a. data.endswith('i')

b. " totally ". join(data.split())

Number System
The value of each digit in a number can be determined using −
✓ The digit
✓ The position of the digit in the number
✓The base of the number system (where the base is defined as the total number of

digits available in the number system)

1) decimal number system - base 10 number system
0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 as digits

2) binary number system- base 2 number system
binary 0 and 1

3) octal number system - base 8 number system
0, 1, 2, 3, 4, 5, 6, and 7

4) hexadecimal number system - base 16 number system
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

To identify the system being used, you attach the base as a subscript to the number.

415 in binary notation 1100111112

415 in octal notation 6378

415 in decimal notation 41510

415 in hexadecimal notation 19F16

✓The digits used in each system are counted from 0 to n – 1, where n is the system’s base.
✓Thus, the digits 8 and 9 do not appear in the octal system.

✓To represent digits with values larger than 910, systems such as base 16 use letters. Thus,
A16 represents the quantity 1010, whereas 1016 represents the quantity1610

The Positional System for Representing Numbers

positional notation—that is, the value of each digit in a number is determined by the
digit’s position in the number. In other words, each digit has a positional value.

How to find positional value of a digit in a number?

The positional value of a digit is determined by raising the base of the system to the
power specified by the position . (baseposition)
For an n-digit number, the positions are numbered from n – 1 down to 0, starting with
the leftmost digit and moving to the right.

eg., the positional values of the three-digit number 41510 are:
100 (10) 2 , 10 (10)1 , and 1 (10) 0 , moving from left to right in the number.

To determine the quantity represented by a number in any system from base 2 through base 10,

you multiply each digit (as a decimal number) by its positional value and add the results.

The following example shows how this is done for a three-digit number in base 10:

Converting Binary toDecimal

conversion process : Multiply the value of each bit (0 or 1) by its positional value and
add the results.

Converts a string of bits to a decimal integer.

bitString = input("Enter a string of bits: ")
decimal = 0
exponent = len(bitString) - 1
for digit in bitString:

decimal = decimal + int(digit) * 2 ** exponent
exponent = exponent - 1

print("The integer value is", decimal)

Enter a string of bits: 1111
The integer value is 15

Converting Decimal toBinary

1) This algorithm repeatedly divides the decimal number by 2.
2) After each division, the remainder (either a 0 or a 1) is placed at the beginning of a

string of bits.
3) The quotient becomes the next dividend in the process.
4) The string of bits is initially empty, and the process continues while the decimal

number is greater than 0.

decimal = int(input("Enter a decimal number: "))
if decimal == 0:

print(0)
else:

bitString = ""
while decimal > 0:

remainder = decimal % 2
decimal = decimal // 2
bitString = str(remainder) + bitString

print("The binary representation is", bitString)

Enter a decimal number: 156

The binary representation is 00111001

Conversion Shortcuts

✓Note the rows that contain exact powers of 2 (2, 4, and 8 in decimal).
✓Each of the corresponding binary numbers in that row contains a 1 followed by a

number of zeroes that equal the exponent used to compute that power of 2.

✓Thus, a quick way to compute the decimal value of the number 100002 is 24 or 1610.

✓The rows whose binary numbers contain all 1s correspond to decimal numbers that are
one less than the next exact power of 2.

✓For example, the number 1112 equals 23-1 , or 710.
Thus, a quick way to compute the decimal value of the number 111112 is 25 -1 or 3110.

Octal Number System

• It requires only 3 bits to represent value of any digit.
• Octal numbers are indicated by the addition of either an 0o prefix or an 8 subscript.
• Position of every digit has a weight which is a power of 8.
• Numeric value of an octal number is determined by multiplying each digit of the

number by its positional value and then adding the products.
• The main advantage of using Octal numbers is that it uses less digits than decimal and

Hexadecimal number system. So, it has fewer computations and less computational
errors.

Conversions

Binary to OctalConversion

Octal to BinaryConversion

Octal to Decimal Conversion

Decimal to OctalConversion

Binary to OctalConversion

bitString = input("Enter a string of bits: ")
decimal = 0
exponent = len(bitString) - 1
for digit in bitString:
decimal = decimal + int(digit) * 2 ** exponent
exponent = exponent - 1

i=1
octal=0
while decimal != 0:

octal += int(decimal % 8)*i
decimal /= 8
i *= 10

print("octal number is: ",octal)

Octal to BinaryConversion

oc = int(input("Enter the octal number: "))
dec = 0
i = 0
while oc != 0:

dec = dec + (oc % 10) * pow(8,i)
oc = oc // 10
i = i+1

bi = ""
while dec != 0:

rem = dec % 2
dec = dec // 2
bi = str(rem) + bi

print("binary number is:", bi)

Hexadecimal Number System

• It requires only 4 bits to represent value of any digit.

• Hexadecimal numbers are indicated by the addition of either an 0x prefix or an 16
as subscript.

• Position of every digit has a weight which is a power of 16.

• Numeric value of a hexadecimal number is determined by multiplying each digit
of the number by its positional value and then adding the products.

• So, it is also a positional (or weighted) number system.

Binary to HexadecimalConversion

Factor the bits into groups of four and look up the corresponding hex digits.

Hexadecimal to BinaryConversion

• Each digit in the hexadecimal number is equivalent to four digits in the binary
number.

• Thus, to convert from hexadecimal to binary, you replace each hexadecimal digit
with the corresponding 4-bit binary number.

List Literals and Basic Operators

• literal string values are written as sequences of characters enclosed in quote marks.

• In Python, a list literal is written as a sequence of data values separated by commas.
The entire sequence is enclosed in square brackets ([and]).

Eg.,

[1951, 1969, 1984]

["apples", "oranges", "cherries"]

[]

A list of integers

A list of strings

An empty list

You can also use other lists as elements in a list, thereby creating a list of lists.

[[5, 9], [541, 78]]

Construction of two lists and their assignment to variables:

>>> first = [1, 2, 3, 4]

>>> second = list(range(1, 5))

>>> first

[1, 2, 3, 4]

>>> second

[1, 2, 3, 4]

The list function can build a list from any iterable sequence of elements, such as a string:

>>> third = list("Hi there!")

>>> third

['H', 'i', ' ' , 't', 'h', 'e', 'r', 'e', '!']

The function len and the subscript operator [] work just as they do for strings:

>>> len(first)

4

>>> first[0]

1

>>> first[2:4]

[3, 4]

Concatenation (+) and equality (==) also work as expected for lists:

>>> first + [5, 6]

[1, 2, 3, 4, 5, 6]

>>> first == second

True

• To print the contents of a list without the brackets and commas, you can use a for loop,
as follows:

>>> for number in [1, 2, 3, 4]:

print(number, end = " ")

1 2 3 4

• Finally, you can use the in operator to detect the presence or absence of a given
element:

>>> 3 in [1, 2, 3]

True

>>> 0 in [1, 2, 3]

False

Replacing an Element in aList
There is one huge difference between String and List.

ie., a string is immutable, its structure and contents cannot be changed. But a list is
changeable—that is, it is mutable.

At any point in a list’s lifetime, elements can be inserted, removed, or replaced. The list
itself maintains its identity but its internal state—its length and its contents—can change.

>>> example = [1, 2, 3, 4]

>>> example

[1, 2, 3, 4]

>>> example[3] = 0

>>> example

[1, 2, 3, 0]

• How to replace each number in a list with its square:

>>> numbers = [2, 3, 4, 5]

>>> numbers

[2, 3, 4, 5]

>>> for index in range(len(numbers)):

numbers[index] = numbers[index] ** 2

>>> numbers

[4, 9, 16, 25]

• This session uses the string method split to extract a list of the words in a sentence.
These words are then converted to uppercase letters within the list:

>>> sentence = "This example has five words."

>>> words = sentence.split()

>>> words

['This', 'example', 'has', 'five', 'words.']

>>> for index in range(len(words)):

words[index] = words[index].upper()

>>> words

['THIS', 'EXAMPLE', 'HAS', 'FIVE', 'WORDS.']

List Methods for Inserting and RemovingElements

>>> example = [1, 2]

>>> example

[1, 2]

>>> example.insert(1, 10)

>>> example

[1, 10, 2]

>>> example.insert(3, 25)

>>> example

[1, 10, 2, 25]

>>> example = [1, 2]
>>> example
[1, 2]

>>> example.append(3)
>>> example
[1, 2, 3]

>>> example.extend([11, 12, 13])
>>> example
[1, 2, 3, 11, 12, 13]

>>> example + [14, 15]
[1, 2, 3, 11, 12, 13, 14, 15]

>>> example
[1, 2, 3, 11, 12, 13]

Searching aList
• After elements have been added to a list, a program can search for a given element.

• The in operator determines an element’s presence or absence, but programmers
often are more interested in the position of an element if it is found.

• Instead of find, you must use the method index to locate an element’s position in a
list. It is unfortunate that index raises an exception when the target element is not
found.

• To guard against this unpleasant consequence, you must first use the in operator to
test for presence and then the index method if this test returns True.

aList = [34, 45, 67]

target = 45
if target in aList:

print(aList.index(target))
else:

print(-1)

Sorting aList

• you can arrange some elements in numeric or alphabetical order.

• A list of numbers in ascending order and a list of names in alphabetical order are
sorted lists.

• When the elements can be related by comparing them for less than and greater than
as well as equality, they can be sorted.

• The list method sort mutates a list by arranging its elements in ascending order.

>>> example = [4, 2, 10, 8]
>>> example
[4, 2, 10, 8]

>>> example.sort()
>>> example
[2, 4, 8, 10]

Mutator Methods and theValue None

Mutable objects (such as lists) have some methods devoted entirely to modifying the
internal state of the object. Such methods are called mutators. Examples are the list
methods insert, append, extend, pop, and sort.

Python nevertheless automatically returns the special value None even when a method
does not explicitly return a value.

Eg.,

>>> aList = aList.sort()

Unfortunately, after the list object is sorted, this assignment has the result of setting the

variable aList to the value None.

>>> print(aList)

None

Aliasing and SideEffects
The mutable property of lists leads to some interesting phenomena, as

shown in the following example:

>>> first = [10, 20, 30]

>>> second = first

>>> first

[10, 20, 30]

>>> second

[10, 20, 30]

>>> first[1] = 99

>>> first
[10, 99, 30]

>>> second
[10, 99, 30]

In this example, a single list object is created and modified using the subscript operator.

When the second element of the list named first is replaced, the second element of the

list named second is replaced also. This type of change is what is known as a side effect.

This happens because after the assignment second = first, the variables first and

second refer to the exact same list object. They are aliases for the same object. This
phenomenon is known as aliasing.

To prevent aliasing, you can create a new object and copy the contents of the original to it

>>> third = []

>>> for element in first:

third.append(element)

>>> first

[10, 99, 30]

>>> third

[10, 99, 30]

>>> first[1] = 100

>>> first

[10, 100, 30]

>>> third

[10, 99, 30]

The variables first and third refer to two different
list objects, although their contents are

initially the same, The important point is that they are not aliases, so you don’t have to be
concerned about side effects.

Equality: Object Identity and Structural Equivalence

• If you might want to determine whether one variable is an alias for
another. The == operator returns True if the variables are aliases for the
same object.

• Unfortunately, == also returns True if the contents of two different
objects are the same.

• The first relation is called object identity, whereas the second relation is
called structural equivalence.

• The == operator has no way of distinguishing between these two types of
relations.

The solution to this problem :

Python’s is operator can be used to test for object identity. It returns True if the two
operands refer to the exact same object, and it returns False if the operands refer to
distinct objects (even if they are structurally equivalent).

>>> first = [20, 30, 40]

>>> second = first
>>> third = list(first) # Or first[:]
>>> first == second

True
>>> first == third

True

>>> first is second
True

>>> first is third

False

Using a List to Find the Median of a Set of Numbers

• If the number of values in a list is odd, the median of the list is the value at the
midpoint when the set of numbers is sorted; otherwise, the median is the
average of the two values surrounding the midpoint.

• Thus, the median of the list [1, 3, 3, 5, 7] is 3, and the median of the list [1, 2,
4, 4] is also 3.

fileName = input("Enter the filename: ") f = open(fileName, 'r')

numbers = []

for line in f:

words = line.split()

for word in words:

numbers.append(float(word))

numbers.sort()

midpoint = len(numbers) // 2

print("The median is", end = " ")

if len(numbers) % 2 == 1:

print(numbers[midpoint])

else:

print((numbers[midpoint] + numbers[midpoint - 1]) / 2)

This script inputs a set of numbers
from a text file and print their median

ListComprehension

List comprehension is an elegant way to define and create lists based on existing lists.

List Comprehension vs For Loop in Python

Suppose, we want to separate the letters of the word “person” and add the letters as
items of a list. The first thing that comes in mind would be using for loop.

>>> letters=[]

>>> for letter in "person":

letters.append(letter)

>>> print(letters)

['p', 'e', 'r', 's', 'o', 'n']

• Iterating through a string Using List Comprehension

letters = [letter for letter in 'person']

print(letters)

['p', 'e', 'r', 's', 'o', 'n']

• Syntax for List Comprehension

[expression for item in list]

Some Examples for List Comprehension:

>>> #compute the square of numbers upto 10

>>> sq = [i*i for i in range(11)]

>>> print(sq)

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

>>> #create a vowels list from a string

>>> v = [i for i in "everyone" if i in "aeiou"]

>>> print(v)

['e', 'e', 'o', 'e']

Coding
Exercises:1. Write a program to print the transpose of a matrix.

2. Write a program to add two matrices.

